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1. Phys. A Math. Gen. 25 (1992) 1223-1235. Printed in the UK 

Racah-Wigner algebra for q-deformed algebras 

Cindy R Lienert and Philip H Butler 
Physics Department, University of Canterbury, Christchurch, New Zealand 

Received 18 lune 1991, in final form 28 October 1991 

Abstract. The concepts of vector coupling coefficients and recoupling coefficients are 
generalized to q-deformed algebras. Their properties under complex conjugation and 
permutation of irreps are derived. Relations hetwen the coefficients, for example, the Racah 
hackcoupling d e ,  are proved. We show that these properties may be used to recursively 
calculate the coupling and recoupling coefficients for all q-algebras. The 3jm and 6j symbols 
for su(Z), are used to illustrate the buildingup method. 

1. Introduction 

In recent years there has been a great deal of interest in the q-deformations of Lie 
algebras sometimes known as ‘quantum groups’. These structures were first uncovered 
in the study of Yang-Baxter equations (Kulish and Reshetikhin 1981, Sklyanin 1982). 
The classical Yang-Baxter equation is related to the Jacobi identity of a classical Lie 
algebra. The quantum equation forms a key element of algebraic structures which are 
one-parameter deformations of Lie algebras. Yang-Baxter type equations arise in 
statistical mechanics (Baxter.l982), conformal field theory (de Vega 1989, Witten 1990) 
and as the multiplication rule for braid groups (Akutsu and Wadati 1987), and so are 
of importance to physicists and mathematicians. Solutions ofthe Yang-Baxter equation, 
the R-matrices, may be based on coupling coefficients of q-deformed Lie algebras 
(Pasquier 1988, Kuniba 1990, Nomura 1989a, b, Hou et al 1990a). 

The Racah-Wigner algebra of su(2), has been developed and the vector coupling 
coefficients (the 3jm symbols) and the recoupling coefficients (the 6 j  symbols) have 
been obtained and the corresponding R-matrices found (Kirillov and Reshetikhin 
1988, Koelink and Koornwinder 1989, Groza et a /  1990, Hou et a1 1990b, Kachurik 
and Klimyk 1990, Nomura 1989a, b, Ruegg 1990). A few vector coupling coefficients 
have been calculated by Koh and Ma (1990) and Kuniba (1990) for the exceptional 
groups and by Ma (1990a, b) forsu(3),. Reshetikhin (1987) gives some of the properties 
of general q-vector coupling coefficients and derives some of these for various groups. 
Jimho (1985, 1987) has calculated the vector coupling coefficients for fundamental 
representations of some q-deformed algebras. However, some of the Racah-Wigner 
algebra for q-algebras has been missing. 

The aim of this paper is to establish the Racah-Wigner algebra for the Drinfeld- 
Jimbo q-deformation of any compact Lie algebra and to show how it can be used to 

coefficients and recoupling coefficients. We state and prove relations such as the Racah 
backcoupling rule. These properties may then be used to build up the coupling and 
recoupling coefficients by first finding primitive coefficients based on a chosen low- 
dimensional faithful irrep. This is a simple extension of the method used for q = 1 by 
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Butler (1976), Searle and Butler (1988) and others. The building up method is illustrated 
in the final few sections by calculating the 3jm and 6j symbols of su(2),. 

C R Lienert and P H Butler 

2. General structure of q-deformed algebras 

The gdeformation Z,, of a Lie algebra Z can be described in terms of the Chevalley 
basis. The algebra 2q, with simple roots ai and corresponding generators X :  and Hi, 
has the deformed commutation relations (Drinfeld 1985, Jimbo 1985) 

[ H ; ,  H,] = 0 [ H j , X T ] = * ( a j a j ) X T  
[X', X J  = Sv[H,] 

and Serre relations 

where for an operator or number x, we define 

and for integers n and k 
[ n l !  

[ n ] ! -  [ n ] [ n  - 11 . . . [ I ]  [ l ] e [ n - k ] ! [ k ] ! '  
The parameter q may take on arbitrary values except that in this paper it is assumed 
that q is not a root of unity. In the limit as q +  1 the Lie algebra is retrieved. There 
are other choices of definition for the symbol [ X I  and the comultiplication (Curtright 
et a/ 1991). In this paper, we have followed Reshetikhin (1987). 

The q-deformed algebra is a Hopf algebra A (Abe 1980) having the following 
comutliplication A : A + A @ A  

(6) 
The Cartan subalgebra of Zq generated by { H , }  is unchanged from that of 2 so 

the representation theory of the algebras are similar (Lusztig 1988, Rosso 1988), unless 
q is a root of unity when some of the representations are not completely reducible. 

A ( X : )  = X : @ q H 8 / 4 + q - H , / 4 @ X :  A(H, )  = H, 0 1 + 1 OH,. 

3. Vector coupling coefficients 

An operator in V'lO VAl can be expressed in terms of operators in VAl and VA2 by 
the comultiplication. Each operator may be realized by representations. A coupled 
representation l ( A l A 2 ) r A i )  can thus be expressed as a combination of the uncoupled 
representations I A , i 1 ) 1 A 2 i 2 ) .  The vector coupling coefficients relate the two, 

l A l i l ) l A 2 i 2 )  = 1 I ( A l A 2 ) r A i )  & A i l A j i 1 A 2 i 2 )  

1 ,,(A, i ,A2i21 r A i )  q (  r'A'i'1 A i ,  A 2 i J  = S,,.S,,.Sjj, 

1 q (  A I i ,  A2i21 r A  i )  q(  rAi1 A ,  i ; A 2 i i )  = Si, ii Si2{; 

(7) 
PA i 

where r is a multiplicity label. The vector coupling coefficients form a unitary matrix 

(8) 

(9) 

i , j j  

,* i 
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where ,,(AlilA2i21rAi) denotes s ( rA i lA , i ,A2 i2 )* .  The action of an operator on a basis 
vector is described by a representation matrix 

GlAi)=lAi)'=Z lAj)A(G)jt. (10) 
1 

The coupling coefficients reduce the product of representation matrices 

1, , 9(rAi \ i (A~i ,h2 i~)h2(G) j~ i ,h2(G) j2 i l  9(AljlA~j21r'A'i') = &A,&,4A(G))ii. .  (11) 

The product of representation matrices is not in general commutative because the 
comultiplication A is not invariant under interchange of the two spaces. However, it 
follows from (6) that 

i l i2 , l l l  

qAi(G) 9A2(G) = ~ j & d G )  i j q A i ( G )  (12) 

where ,/,,A(G) are representation matrices of =Yljq. This property influences the sym- 
metries of the vector coupling coefficients. 

The complex conjugate matrix to q,(G) is defined (Nomura 1990) so that 

1 qA(G)ijqA(G)E;=Z &(G)$ qA(G);*=&t (13) 

and is denoted ,A(G)$ = 9A(G)u, The complex conjugate matrix is related to the matrix 
,A*(G) of the representation conjugate to A. The unitary matrix relating the two is 
9(A)c ,  where 

9A*(G)g = q ( A ) ' k  9A(G)k'9(A)~ (14) 

With A 2 = A T  in ( I l ) ,  A is the identity representation, denoted 0, and it follows 

; ,' 

and 9 ( A ) g = 9 ( A ) $ .  

from (1 1 )  and (13) that 

= ,(AlA*j100)IA1'/2 (15) 

where IAl is the q-dimension of A. Reshetikhin (1988) gives the trivial vector coupling 
coefficient 

qP(l.)i2 

+.(+A*- ~100) =F 4+ (16) 

where 4 is a phase and ~ ( p ) = & , ~ f f . ( @ ) ,  p being a weight. Under complex 
conjugation we have ={A} ,/9(A*)ji so that {A}  is the generalization of the 2j phase. 

4. Properties of the coupling coefficients 

The symmetry of the vector coupling coefficients under interchange of the first two 
irreps is not trivial, but rather from the property of the representation matrices (12) it 
follows that 

&ililA2i21rAi) = {(12)AlAzA*}, I,q(A2i2Ali,(sAi) (17) 

where [(12)AlA2A*},s is the 3-j factor for this interchange. It is chosen to be 
{(12),+,h2~*}, = {A,A2A*}S,s. Alternatively, the non-commutability of the representa- 
tion matrices can be described by the braiding matrix or R-matrix 

R>*> q ~ l ( ~ )  9 ~ Z ( ~ ) = ' 1 ~ 2 ( ~ )  ,A , (G)R>*~ .  (18) 
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The braiding matrix is a q-deformation of the permutation matrix mapping V*i@ V*' 
into V% V*l. The vector coupling coefficients are shown by Reshetikhin (1987) to 
have the following symmetry 

C R Lienert and P H Butler 

* A  m,m* 
(R,I ,JAlmlA2m21rAm) = {AlA2A*r}q(c'")-'("I)-c(*2))/2 q(,bdAlmilrAm) (19) 

where c(A) is the quadratic Casimir operator acting on V". 
Another property of the coupling coefficients and R-matrices is the pentagonal 

relation (Reshetikhin 1987, Hou et a1 1990) 

1 ~ R ~ ~ A ~ ) " , I " , ~ R ~ ~ ~ ~ ' ~ q ~ A l m l A 2 m 2 ~ r A 3 m 3 ) = , ( A l m ~ A 2 m ~ ~ r A , m ~ ) ( R ~ A ) ~ , ~ ~ ~ .  (20) 

Complex conjugation of (11) and use of equations (13), (14) and (17) shows that 
the vector coupling coefficient and that obtained by replacing the irreps with their 
conjugates, are related by 

(21) 

On interchanging A ,  or A 2  and A,, the vector coupling coefficients have the following 

m,m>m, 

9(AlilA2i2bW = A(AlA2A)rsq(A) 'k  1/9(sA*klA\T4AT 1,) q ( A A j , l ,  4(A2)i212 

where for most algebras A,5 = 

symmetries 

(Butler 1975). 

( 2 2 )  & , J J 2 J 2 b A 3 j J  =- ,/21 q ( ~ ~ & l A & A f  O{(WAd&),, 

I; 9(AljlA2j~Ir.hJ3) 4 ( A l ) J i '  =l 1 4(~A2j21h:lA3J3){(23)h1A2h:.}r.. (23) 
j ,  lA211'2 

To prove the first statement, we use the unitary property of the vector coupling 
coefficients to shift one of the coefficients in (11) to the right-hand side and multiply 
by AZ(G)'ziz re-expressed using (14) to give 

&I(G),A , ( A I ~ I A z J ~ I ~ A ~ J J  

IAII"~ 
j ,  I A i I  * 

IA 

= .,(AlilA2i21rA3i3) 4,43(G)iJ, 4 ( A 2 ) j 2 ~ r  ,A?(G)m,l, q(A2) i2m2.  (24) 

Substituting for A,(G)Af(G) from (11) and rearranging 

9AdG)j,i, q(AljlW21rW3) , (A2) i2m2 q ( ~ 3 J 3 ~ ~ ~ 2 1 s W J  

= 9(AlilA2i21rM3) .,(A3i3Afm2bAimJ &(G),,I , .  (25) 

Let Mj,m, = 9(AljlA2j21rA3j3) 9(A,)i2mZ &,j3Af12~sA~l,) so that the last equation becomes 

Ai(G)j,t1Mj,m, = Mi, , ,Ai (G)m1;,  . (26) 

Schur's second lemma then states that either M;,;, is a multiple of the identity matrix 
and A,  and A: are equivalent or Mj,I ,  is the zero matrix, so that the result follows. 

One could define a q -3jm symbol in analogy with 3jm symbols for groups (Butler 
1975) by 
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5. Recoupling coefficients 

The recoupling coefficient arises when three representations are coupled to give a 
fourth. By considering coupling in two different orders the recoupling coefficient is 
shown to satisfy 

E ~ ( r 1 ~ ~ ~ 2 ~ 1 2 ~ ~ ~ ~ , ~ ~ ~ ~ ) ~ ( r ~ ~ ~ ~ , 2 ~ , ~ ~ , l ~ )  
1 d 1 2 J 1 2 ‘  

X 9 ( A l .  ( A A ) r & 3 ;  r ’ A l ( A l W . 3 ,  r I 2 b 2 ;  4 
= 1 q (  r’A 11 A I 4 A>3 I d  4 (r23A23 I*, I A J 2 A  3 1,). (28) 

A d a  

The q - 6 j  symbol is defined in terms of the recoupling coefficient by 

j;; ::: ::),s,,,,,.. 

= {lA121 l ~ 2 3 ~ ~ ~ ” z ~ ~ 2 ~ ~ ~ ~ 2 ~ 3 ~ * ~ ~ ~ ~ ~ 3 ~ ~ l ~ ~ ~ ~ ~ ~ , ~ ~ ~ , ~ ~ ~ ~ ~ ~ ~ ~ 2 ~ ~ A ~ 3 l , ~ , ~ ~ ,  

X q((AJ2)r12A12, A , ;  rAIAl, ( A 2 A 3 ) r 2 3 A 2 3 ;  r’A). (29) 

The symmetries of the recoupling coefficients are easily derived from those of the 
vector coupling coefficients and are very similar to the q = 1 case. 

q ( ( A l A 2 ) r 1 ~ A 1 2 ,  A 3 ;  r A I A l ,  ( A 2 A 3 ) b d 2 3 ;  SA) 

= {(13)~,A,hGl,,,,;,{(13)A,2h,~*},,,{(13)~~,h23~*~,~{h2h,hf3r13l 

X I ~ 9 ( ( A * A 3 ) r ’ A T 2 ,  A 2 ;  r’dTlA*,  ( A 3 A 2 ) r 2 3 A 2 3 ;  s‘A?) (30) 

= { ( 1 3 ~ ) ~ l ~ 2 A ~ 2 } , , , , ; , ( ( 1 3 ) ~ ~ ~ ~ ~ ~ 3 } , ~ , , ~ , { ( l 3 2 ) ~ , ~ 2 ~ ~ * } ~ ~ ~ { ~ ~ 2 ~ , ~ * r ~  

x q ( ( A 2 3 A : ) r ; 3 A 2 ,  AT2; r ’ d h .  (A:AT2)rA*; s’AT) (31) 

= {(23)A,~2hT2},,,,;,{(23)A1~~,h*I,,~{(13)~12~\,A*I,,,{(13)h2h3~f\fI,,,,~, 

X q ( ( A T A ) ~ ‘ A 2 3 ,  A:; r k A 2 l A f ,  ( A A : ) r ‘ A , 2 ;  #&). (32) 

Similar symmetries hold for other interchanges of the pairs ( A l ,  AT), (A, , ,  A I 2 )  and 
(A*, A>) .  Complex conjugation involves a change from q to l /q ,  as for the vector 
coupling coefficients 

q ( ( ~ l ~ d r d l ~ .  A , ;  rAIAl ,  ( A 2 A 3 ) r 2 3 A 2 3 ;  r ’ h )  

(33) * A* * =, / , (AT,  (AfAi+)r23Af3; r’A I( I&)A:. r I 2 A T Z ;  .A’). 

The recoupling coefficients also satisfy the orthogonality relation 

C { q ( ( A l A 2 ) r 1 2 A 1 2 ,  A,; rAlA,, (A2A3)r23A23sA) 
*l‘li?, 

X q ( A l ,  (A2A3)r2 ,A2 , ;  s ’ A ’ l ( A , A 2 ) r , , A l 2 ,  A , ;  r’A’)l 

= 6,,.6,,&.. (34) 



1228 C R Lienert and P H Butler 

Two expressions relating recoupling coefficients are the Racah backcoupling rule 
and the Biedenham-Elliott sum rule. The latter is unchanged for q-recoupling 
coefficients 

E { { A l A Z 3 A t 3 t )  q ( ( W 2 ) r 1 2 A 1 2 ,  A , ;  r 1 2 3 ~ 1 2 3 1 ~ l .  ( A 2 A 3 3 r z 3 A 2 3 ;  %23) 

x ~ ( ( A ~ ~ A ~ ) ~ A ~ ~ ~ ,  A 4 ;  r A b 2 3 ,  ( A I L ) r l A l &  4) 
= E {{A,2A3hT23r123)[A1A2AT2r12){A2A3h:)r2)) 

x 4((A3A12)r123A123.  A 4 ;  r A l A 3 ,  (~12~hlz4~124;  r'h) 

x q ( ( A 2 A l ) r 1 2 A , 2 ,  ha; r124A1241A2, ( h 1 A 4 b 1 4 A 1 4 ;  *;24A124) 

r,WA,*d.'riW 

x &, (A2A14)*;24A124; r'Al(A3A2)r23A23, A I &  SA)). (35 )  

The Racah backcoupling rule for recoupling coefficients is 

4 q ( ( A l ~ 3 ) r I ~ z ,  P T ;  r 3 A f l A l .  ( r 3 ~ ? ) r 2 A 2 ;  r&) (c iA, )+c(* , )+=(c , )+c(c~)) /2  

{ P Z ) [ Y ) [ ( ~ ~ ) ~ ~ T A : ) , ~ I ( I ~ ~ ) P L ~ A T Y J , , , .  c(u)+c(A, )+Cip, ) ) /Z  
= E 9' 
.,'" 

x [ ( 2 3 ) A 2 ~ L , ~ f J , * . i { A l A ~ A 3 r ~ }  

xs( (A2v)s ' r2 ,  P ] ;  r 3 A f l A 2 ,  ( w b A I ;  r&) 

x q ( ( A l ~ 3 ) r l p 2 ,  A?; s'ulA,, ( P ~ A % P I ;  sv)  (36 )  
IvllA211/2 

( 1 ~ 1 1  l A i l 1 ~ 2 1 ) " ~ '  

71-" !--A7 -_.._ I:-- -..I- F-II -...- F-r\.r th- ;A--+:+.r 
,,,c ur*ncu"ylllrg L U l G  L Y I I U W D  L L Y L l l  L L l r  L U L L L U L J  

q ( ( A l r 3 ) r I c 1 z ,  rk r 3 A f l A l ( r 3 r % A 2 ;  id:) 
= E q ( ( A l r 3 ) r 1 ~ 2 ,  rf; r3A%2G!)r'v, fit;  AI) 

x . ( ( p 2 A ? ) r ' v ,  P:; r A , I A l ( r 3 r T ) r ~ A ~ ;  r 4 A f )  

"I,' 

by expanding the right-hand side in terms of vector coupling coefficients, and using 
the symmetries proved for coupling coefficients to re-express four of the coupling 
coefficients 

s ( r ' v ~ I ~ ~ m ~ A f k J  
= 4' c ( * , ) + e ( " ) - c i r * ) ) / 2 ( R ~ * " ~ ~ ~ ~ ~  . 

7 I..'? o(A2n;vp'!p2mz) 7 ,  

1 Y ( 1 / 2  

I r z l  X- q ( A f )  ""'{P2}{(132)P2AT v ) , , ~ ,  

q( ~ P P ?  Il I rA I n I )  

lYl' l2 
= , ( r u p l A l n l p 1 m : )  7 ,(PT)~,~;[Y){(I~)u~TA:},, IA,l 

q ( r 4 A ? k 3 1 A l n l A 2 n 2 )  
= q ( c ( * ~ ) - c ~ * ~ ) - c i * ~ ) ~ / z ( R ~ ~ ) ~ ~  q(r,Afk,lA2n;A,n;)[A,A2A3r1} 



On application of the pentagonal relation, ( Z O ) ,  the R-matrices cancel giving the result. 
The Biedenharn-Elliott sum rule follows in a similar way. 

6. Method of calculation 

The properties of the coupling and recoupling coefficients that have been proved in 
the previous sections can be used in their calculation. The building up method used 
in the q = 1 case (Butler and Wyhourne 1976, Butler 1976, Searle and Butler 1988) can 
he adapted readily for use for q-deformations of Lie algebras. All the irreps of the 
algebra can be obtained from the comultiplication of a faithful representation. The 
component irreps of the lowest dimension faithful representation are called primitive 
irreps. The primitive coupling coefficients are then defined to be the non-trivial 
coefficients containing a primitive irrep at least once. 

The primitive recoupling coefficients can be calculated from their orthogonality 
(34) and by use of the Racah backcoupling rule (36). The Biedenharn-Elliott sum rule 
(35) may then be used to find recoupling coefficients with higher dimensional irreps. 
The primitive coupling coefficients are similarly found from their orthogonality proper- 
ties (8) and (9). Both the primitive recoupling coefficients and vector coupling 
coefficients can then be used via the recoupling equation (28) to find the general 
coupling coefficients. This approach has been used to confirm the results obtained for 
some of the coupling coefficients of G2 by Kuniba (1990). The final part of the paper 
illustrates this method by calculating the coupling and recoupling coefficients for su(2),. 

7. Structure of su(Z), 

The results of the preceding sections are applied to  the q-algebra su(2),. This algebra 
has representations which are labelled by j and m as for su(Z), the group of angular 
momentum. The irreps have the q-dimension 

lj l=[2j+l].  (37) 

For su(2), the irreps are real and the multiplicities are all 1. From equation (16) the 
trivial vector coupling coefficient has the value 

Using the definition of the q-6j  symbol, (29). the trivial q-6j  is thus 
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From the symmetries of the recoupling coefficients, (31), (32) and (32), the 4 - 6 j  
symbol has the symmetries 

C R Lienert and P H Burler 

The q-3jm symbol can be defined for su(2), (Nomura 1989, Hou el al 1990) by 

From the definition of the 3jm, (42), and the symmetries of the vector coupling 
coefficients (17), (22) and (23 ) ,  it follows that the symmetries of the su(2), 3jm symbol 
are 

( L2 jll J 3 )  - - ... (43) 

(44) 

I/, m m3 

, . i. I. il i, j ,  1 
,/,\--m, --i2 -m3)' 

= 1 2  I, 

The recoupling equation (28) may be re-expressed in terms of su(2), 6 j  and 3jm 
symbols as 

[j2 
J 2  j3) ( jl j 2  

, 1, l2 1, , m, m, m3 

x I/, ( - I ; ,  m2 J 2  n3 ") -n2 l2 m3 J 3  1. (45) 

8. Calculation of su(2), 6j symbols 

The primitive irrep for su(2), is that for which j= f  so that the primitive 6 j  symbols 
are of one nf !he !WO fnrms 

,[ a f a-+ ]  

b-f  e b 

The calculation for 6 j  symbols of su(2), is carried out in exactly the same manner as 
for 4 2 )  (Butler 1976). The orthogonality properties (34) give three equations in the 
primitive 6js. On combining the equations using symmetries we obtain the relation 

a + a + f  ] =[2a][2b-I]  (47) 
[ a ' '-'I2 

b-f c b - 1  
[2a  + 2][2b + 13 
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and on iteration 

a f a + ! 2  
b - f  c b I I 

- [ 2 0 ] ! [ 2 b -  1]![2a+2-x]![2b+ 1 -XI! 

a - x / 2  4 a-x/2+4 

- 
[ 2 a - x ] ! [ 2 6 -  1 - ~ ] ! [ 2 0 + 2 ] ! [ 2 b +  I ] !  

b - x f 2 - f  c b - x / 2  

The boundary condition occurs when x has its maximum value satisfying the triangle 
conditions, x = a - b - c. Then the orthogonality condition, (34), gives for the 
boundary 6 j  

i ( a - b + c )  f : (a-b+c-1)  1 
(49) + b + c -  1) c %-a+ b + c )  [ a  - b+ c+21[-a + b + c + l ] '  

Substituting back, cancelling terms and taking the square root 

where aabC is a phase to be determined. Using (50) and the orthogonality condition 
(34) together with a q-number identity from Andrews (1976) gives the second 
primitive 6j 

a + b - c ] [ a  + b + c+ 13 
11[261[26+ I] ( 5 1 )  

a '  

The Racah backcoupling rule (36) together with the phase of the trivial 6j and the 
symmetries of the 6j symbols enable the phases mabe and pnk to be found 

(52) 

The genera! 6 j  symbols are found from the primitive 6j symbols by using the 
Biedenharn-Elliott sum rule (35). Substituting the primitive 6j, (50), into the right-hand 
side of equation (35) and simplifying using symmetries and the substitution 

q P  I r s I =  [ a  + r+ s +  l ] ! [ b + p  +s+ l ] !  

a+b+c 
a a b c = P a b < = ( - 1 )  . 

a b c [ p + r - c ] ! [ a - r + s ] ! [ - p + b + s ] !  

where 

a + b - c ] ! [ a  - b+ c l ! [ - a  + b + e ] !  
[ a  + b+c+ l ] !  1 A( abc) = 

gives the recursion relation 

(53) 

(54) 
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On iterating, we obtain 

C R Lienert and P H Butler 

b c  [Zs-XI! 
[2s + 1 +x -2xl 

- . ~ - l ~ ~ L 1 . _  :~ ~~..:c.> L.. .~~L-...~~.:-. :-- ,rr\ .-> ..-LI .:-- .L_ I ... ̂  .^_-. inis soluiion IS vcriiicu uy auusnruung iiiiu cquauuii ( J J ]  anu curnuming iiic LWU LCILIIS 

on the right-hand side using a q-number identity (Andrews 1976). 
The 6j symbol on the right-hand side of (56) has a stretched form when X has the 

maximum value X = p + r - c. The 6j symbol related to this stretched form by summetry 
(40) can he found from equation (56) with X = 2A 

l a  s' BI 
( A , A + B  b (  

2A 

y - 0  y [2b+1+2A-y]!  
= 1 ( - 1 ) y [ 2 A ]  [2b-y1!  [26+1+2A-2y] 

0 B b + A - y  (57) 

The only non-zero term on the right is that for which y = b + A - s'. Substituting the 
value of the trivial 6j, (39), and the definition (53) into (57) we obtain for the 
stretched 6j 

- (-l)'+b+A+B [ b - A + s']  ! 
[ A  - b + s'] ! [ b  + A - s']! [ -a + s'+ E ] !  

- 

[ a  + b + A  + B + l ] !  
X 

[ a  - s'+ b ] ! [ a  + b -  A -  B ] ! '  

U P  1" f ) = ~ ( - l ) y [ a + b + ~ + l + 2 ( p + r + s - y ) ]  

x A(abc)A(ars)A(pbs)A(prc) 

[ a  + r +  s+ l ] ! [ a  + r +  s +2p - y ] !  
[-a + r + S I !  [ b  + c + r + s + 2p + 1 - y ] !  

1 
[ y  - a - r - s] ! [ b  + c+ r+ s - y ]  ! 

X (59)  

where the product is over cyclic permutations of the pairs (a, p ) ,  (b, r )  and (c. s). 
The previous calculations of the su(2),  6 j  symbols have involved direct substitution 

of the explicit formulas for the 3jm symbols and performing the summations using 
the q-binomial coefficients product rule or hypergeometric series (Kirillov and 
Reshetikhin 1988, Hou ef al1990h, Kachurik and Klimyk 1990). Alternatively, proper- 
ties of the q-Hahn polynomials have been used (Koelink and Koornwinder 1989). 
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This method constructs the 6 j  symbols using only their properties, which in turn are 
derived from the structure of the q-algebra. The summations performed are simpler, 
with no 9 factors involved at all. Kachurik and Klimyk (1990) find a recursion relation 
similar to ( 5 5 )  but do not use it to find the 6 j  symbols. 

The algebraic expression above for the s u ( 2 ) ,  6j symbols has a different number 
and structure of terins than that previously known (Kirillov and Reshetikhin 1988, 
Koelink and Koorwinder 1989, Hou et a1 1990). Both are obtained from forms of 6j  
symbols for 4 2 )  by replacing n with [n]. Butler (1976) notes it is not surprising that 
there are different forms for the 6 j  symbols since these are related to the hypergoemetric 
series 4F3 for which many expressions are known. 

9. Calculation of su(2), 3jm symbols 

All the primitive 3jm's are related by symmetries to 

9 

n.e  c.!cu!.tin!! of !his symbo! is carried out in !he same m2nner 3s for ru(2) (Bu!!cr 
1976); however, there are explicit powers of q involved. To calculate the explicit form 
of this symbol, we use the orthogonality relations (8) and (9) and the definition of the 
q - 3 j m  ( 4 2 ) .  After iterating j +  m + 1 times, and choosing an appropriate phase we 
obtain 

(62) I 1 

[ j , +  m2 - X I !  [ j - j 2 +  m ,  + X I !  [ j - j ,  - m 2 + x l !  
X 

where c ( j ) = j ( j + l ) .  
These 3jm symbols for s u ( 2 ) ,  have been calculated previously. Groza el ol (1990) 

and Hou et al (1990b) use the method of highest weights where the symbols for m = j 
r-..--I -..A +ha- ..-.A t- f i - ~  tho n P n m r 2 1  c v m h n l s  Koelink nnd Koomwinder (1989) 

use q-Hahn polynomials and hypergeometric series, while Ruegg (1990) defines a 
q-derivative and constructs an invariant which is used to find the vector coupling 
coefficients. The current calculation uses the general properties of the 9 -3 jm symbols 
and the values of the primitive 6 j  symbols for su(2), to find the general form for the 

a,= l"",lU a.,u L , . ~ , ,  "I-" L" L.,." 6'...,.... I ,...- ----..---- - - - -  



1234 

q - 3jm's rather than working directly from the comultiplication and representation 
matrices of the generators. 

C R Lienert and P H Butler 

10. Conclusions 

The Racah-Wigner algebra for a q-deformed Lie algebra is somewhat different to the 
Rach-Wigner algebra for the corresponding group: there is an explicit dependence on 
the deformation parameter q in the vector coupling coefficients and recoupling 
coefficients and symmetry properties of the coefficients are complicated by additional 
q to l / q  interchanges. The Bidenharn-Elliott sum rule is unchanged from the q = 1 
case but the Racah backcoupling rule has explicit q factors. In spite ofthese differences, 
the building-up method for calculating the coupling and recoupling coefficients can 
be extended to q-algebras. 

The present recursive calculation of q - 3 jm symbols for su(2), is as straight forward 
as those known (Hou et al 1990, Kirillov and Reshetikhin 1988, Groza et al 1990, 
Ruegg 1990) giving the same result when differences in the definition of q are taken 
into account. The derivation in this paper of the q - 6 j  symbols using the building-up 
method is far simpler and less dependent on the special properties of q-series than 
those based on Racah's method (Hou et al 1990, Kirillov and Reshetikhin 1988). 
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